By Topic

Resilient Control for Serial Manufacturing Networks With Advance Notice of Disruptions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yao Hu ; Dept. of Electr. & Comput. Eng., Univ. of Kentucky, Lexington, KY, USA ; Jingshan Li ; Holloway, L.E.

This paper discusses optimal control policies to achieve resilience in a class of serial manufacturing networks. Resilience is the ability of a system or enterprise to minimize the effects of a disruption. Although resilient manufacturing enterprises have been investigated in many different areas, there has been little analytical investigation into real-time control policies for resiliency. Our goal is to study the real-time resilient control for manufacturing systems through mathematical analysis. To achieve this, we start with developing a model for a general manufacturing network. Then, the optimal control problem is developed for a simple type of serial network called a Decreasing Storage Cost and Decreasing Capacity (DSCDC) network given disruptions with advance warning. It is then shown that the results of the DSCDC network can be generalized to more general serial networks.

Published in:

Systems, Man, and Cybernetics: Systems, IEEE Transactions on  (Volume:43 ,  Issue: 1 )