Cart (Loading....) | Create Account
Close category search window
 

Investigations of a Double-Gap Vircator at Submicrosecond Pulse Durations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shlapakovski, A.S. ; Dept. of Phys., Technion - Israel Inst. of Technol., Haifa, Israel ; Queller, T. ; Bliokh, Yu.P. ; Krasik, Y.E.

The results of investigations of a double-gap vircator driven by a 20 Ω and 500-ns generator operating in the output voltage range 400-600 kV are presented. The vircator generated microwave pulses with a peak power of up to 200 MW at ~5% efficiency and the frequency varied from 2.0 to 2.3 GHz depending on the cavity geometry. The limitations on the microwave pulse duration not related to the cathode plasma expansion are addressed. On the one hand, the microwave generation is terminated because of the plasma formation at the foil separating the cavity sections, so that the virtual cathode (VC) electron space charge is neutralized by the plasma ion flux. On the other hand, if the electron beam energy deposition into the foil is reduced, a substantial delay in the start time of the microwave generation appears, which has been studied in detail. With these limiting factors, the microwave pulse full duration varied from 100 to 350 ns; the maximal full width at half maximum duration achieved in the experiments was ~180 ns. Measurements of the current transmitted through the vircator cavity indicated the existence of a VC in spite of the absence of microwave generation during the delay. The experimental dependence of the microwave generation starting current on the diode voltage is presented, and possible mechanisms behind the generation delay are discussed. Simplified numerical simulations emphasize the role of the portion of electrons that are reflected from the VC, the number of which must be sufficient for the microwave generation to occur.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.