By Topic

Instantaneous Torque Control of Small Inductance Brushless DC Motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiancheng Fang ; Fundamental Science on Novel Inertial Instrument and Navigation System Technology Laboratory, Beijing University of Aeronautics and Astronautics, Beijing, China ; Xinxiu Zhou ; Gang Liu

Due to the small inductance, modulation of three-phase inverter induces serious torque ripple. In addition, the increase in modulation frequency is limited by the processor speed. Therefore, the traditional torque control approaches are not suitable. In order to solve the aforementioned problems, a new instantaneous torque control method for small inductance brushless dc motor is proposed by improving the torque estimation and control. First, instantaneous torque is estimated through improved position information and back electromotive force (EMF) coefficient estimation. The former is achieved by the proposed hall sensors position calibration and compensation method, and the latter is obtained by neural network fitting. Second, the torque ripple reduction is realized in the conduction and commutation region. The ripple caused by three-phase inverter modulation is suppressed by the dc-link buck converter pulsewidth modulation control method. Upon this, an asymmetry compensation function is designed to solve the problem of unbalance among three phase windings. After that, back EMF disturbance, which is applied to current dynamics, is compensated through feedforward control. Subsequently, the commutation ripple is reduced by the outgoing phase control. Finally, the validity of the proposed torque control method is verified through experimental results.

Published in:

IEEE Transactions on Power Electronics  (Volume:27 ,  Issue: 12 )