By Topic

Dynamics Assessment of Advanced Single-Phase PLL Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Golestan, S. ; Dept. of Electr. Eng., Islamic Azad Univ.-Abadan Branch, Abadan, Iran ; Monfared, M. ; Freijedo, F.D. ; Guerrero, J.M.

Recently, several advanced phase-locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL and the second-order-generalized-integrator-based PLL are very attractive, owing to their simple digital implementation, low computational burden, and desired performance under frequency-varying and harmonically distorted grid conditions. Despite the wide acceptance and use of these two advanced PLLs, no comprehensive design guidelines to fine-tune their parameters have been reported yet. Through a detailed mathematical analysis, it is shown that these two PLL structures are equivalent to each other, from the control point of view. Then, a linearized model is developed which is valid for both PLLs. The derived model significantly simplifies the stability analysis and the parameter design. To fine-tune the PLL parameters, a systematic design approach is suggested afterward, which guarantees a fast dynamic response, a high disturbance rejection ability, and a robust performance. Finally, the simulation and experimental results are presented to support the theoretical analysis.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 6 )