By Topic

Top-Gate Staggered a-IGZO TFTs Adopting the Bilayer Gate Insulator for Driving AMOLED

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chang-Yu Lin ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chih-Wei Chien ; Cheng-Han Wu ; Hsing-Hung Hsieh
more authors

We report the successful implementation of top-gate staggered amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) with decent performance and environmental stability by adopting the SiOx/SiNx bilayer gate-insulator stack. The PECVD SiOx and SiNx were used as the first and second gate insulators, respectively, in the TFT to simultaneously ensure the channel/gate-insulator interface properties for device performances and the water impermeability of the gate insulator for effective passivation of the channel layer. It was also found that the cleanliness of the back-channel interface (and thus the effectiveness of the source/drain etching process) is critical for the successful implementation of the top-gate staggered a-IGZO TFTs. In this paper, a two-step wet-etching process for source/drain was used to ensure the quality of the back-channel interface. Finally, we successfully integrated the top-gate staggered a-IGZO TFTs into a working 2.2-in active matrix organic light-emitting display panel, demonstrating the real use of the developed TFTs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:59 ,  Issue: 6 )