By Topic

UWB Antennas for Communication Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Adamiuk, G. ; Inst. fur Hochfrequenztech. und Elektron., Karlsruhe Inst. of Technol., Karlsruhe, Germany ; Zwick, T. ; Wiesbeck, W.

Since the U.S. Federal Communications Commission (FCC) opened the spectrum from 3.1 to 10.6 GHz for unlicensed radio applications with an EIRP of up to 41.3 dBm/MHz, numerous papers have been published on ultrawideband (UWB) antennas. Often the goal in these publications is to present an antenna, which has a satisfactory input reflection coefficient and a reasonable, constant radiation diagram versus frequency. However, in the case of UWB, there are numerous additional critical characteristics, which must be considered in the proper wireless system design. The publications, which treat this topic with sufficient proficiency, use such quantities as transient gain, group delay, ringing, dispersion, signal fidelity, polarization, efficiency, and the peak value of the transient response. For practical applications based on signals with an UWB instantaneous bandwidth occupation, all criteria are of vital importance, because they determine the sensor resolution, accuracy, or increase the bit error rate in communications systems. This paper gives an overview of UWB antenna designs together with their suitability for different applications with respect to the aforementioned critical characteristics. Additionally, UWB antenna array design, polarization diversity, and application in body area network (BAN) will be discussed. In nearly all cases the time-domain characteristics are taken into account, as they are more intuitive to interpret and very convenient for time-domain UWB system design.

Published in:

Proceedings of the IEEE  (Volume:100 ,  Issue: 7 )