By Topic

Open-Circuit Voltage Improvement of InAs/GaAs Quantum-Dot Solar Cells Using Reduced InAs Coverage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Christopher G. Bailey ; Rochester Institute of Technology, Rochester, USA ; David V. Forbes ; Stephen J. Polly ; Zachary S. Bittner
more authors

Ten-, 20-, and 40-layer InAs/GaAs quantum-dot (QD)-embedded superlattice solar cells were compared with a baseline GaAs p-i-n solar cell. Proper strain balancing and a reduction of InAs coverage value in the superlattice region of the QD embedded devices enabled the systematic increase in short-circuit current density with QD layers (0.02-mA/cm ^2 /QD layer) with minimal open-circuit voltage loss (∼50 mV). The improvement in voltage was found to be due to a reduced nonradiative recombination resulting from a reduced density of larger defective QDs and effective strain management. The 40-layer device exceeded the baseline GaAs cell by 0.5% absolute efficiency improving efficiency relative to the baseline by 3.6%.

Published in:

IEEE Journal of Photovoltaics  (Volume:2 ,  Issue: 3 )