Cart (Loading....) | Create Account
Close category search window
 

A Conceptual Modeling of Meme Complexes in Stochastic Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xianshun Chen ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Yew Soon Ong

In science, gene provides the instruction for making proteins, while meme is the sociocultural equivalent of a gene containing instructions for carrying out behavior. Taking inspiration from nature, we model the memeplex in search as instructions that specify the coadapted meme complexes of individuals in their lifetime. In particular, this paper presents a study on the conceptual modeling of meme complexes or memeplexes for more effective problem solving in the context of modern stochastic optimization. The memeplex representation, credit assignment criteria for meme coadaptation, and the role of emergent memeplexes in the lifetime learning process of a memetic algorithm in search are presented. A coadapted memetic algorithm that takes the proposed conceptual modeling of memeplexes into actions to solve capacitated vehicle routing problems (CVRPs) of diverse characteristics is then designed. Results showed that adaptive memeplexes provide a means of creating highly robust, self-configuring, and scalable algorithms, thus generating improved or competitive results when benchmarking against several existing adaptive or human-designed state-of-the-art memetic algorithms and metaheuristics, on a plethora of CVRP sets considered.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 5 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.