By Topic

Electroencephalography (EEG)-Based Brain–Computer Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization and State Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dandan Huang ; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, US ; Kai Qian ; Ding-Yu Fei ; Wenchuan Jia
more authors

This study aims to propose an effective and practical paradigm for a brain-computer interface (BCI)-based 2-D virtual wheelchair control. The paradigm was based on the multi-class discrimination of spatiotemporally distinguishable phenomenon of event-related desynchronization/synchronization (ERD/ERS) in electroencephalogram signals associated with motor execution/imagery of right/left hand movement. Comparing with traditional method using ERD only, where bilateral ERDs appear during left/right hand mental tasks, the 2-D control exhibited high accuracy within a short time, as incorporating ERS into the paradigm hypothetically enhanced the spatiotemporal feature contrast of ERS versus ERD. We also expected users to experience ease of control by including a noncontrol state. In this study, the control command was sent discretely whereas the virtual wheelchair was moving continuously. We tested five healthy subjects in a single visit with two sessions, i.e., motor execution and motor imagery. Each session included a 20 min calibration and two sets of games that were less than 30 min. Average target hit rate was as high as 98.4% with motor imagery. Every subject achieved 100% hit rate in the second set of wheelchair control games. The average time to hit a target 10 m away was about 59 s, with 39 s for the best set. The superior control performance in subjects without intensive BCI training suggested a practical wheelchair control paradigm for BCI users.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:20 ,  Issue: 3 )