By Topic

An Integrated Region-, Boundary-, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ali, S. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., New Brunswick, NJ, USA ; Madabhushi, A.

Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their 1) inability to resolve boundaries of intersecting objects and to 2) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation with automated initialization based on watershed. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term is the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary-based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei and lymphocytes reveals that the model easily outperforms two state of the art segmentation schemes (geodesic active contour and Rousson shape-based model) and on average is able to resolve up to 91% of overlapping/occluded structures in the images.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 7 )