By Topic

Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rocher, R. ; INRIA/IRISA, Univ. of Rennes 1, Lannion, France ; Menard, D. ; Scalart, P. ; Sentieys, O.

In embedded systems using fixed-point arithmetic, converting applications into fixed-point representations requires a fast and efficient accuracy evaluation. This paper presents a new analytical approach to determine an estimation of the numerical accuracy of a fixed-point system, which is accurate and valid for all systems formulated with smooth operations (e.g., additions, subtractions, multiplications and divisions). The mathematical expression of the system output noise power is determined using matrices to obtain more compact expressions. The proposed approach is based on the determination of the time-varying impulse-response of the system. To speedup computation of the expressions, the impulse response is modelled using a linear prediction approach. The approach is illustrated in the general case of time-varying recursive systems by the Least Mean Square (LMS) algorithm example. Experiments on various and representative applications show the fixed-point accuracy estimation quality of the proposed approach. Moreover, the approach using the linear-prediction approximation is very fast even for recursive systems. A significant speed-up compared to the best known accuracy evaluation approaches is measured even for the most complex benchmarks.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 10 )