Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Correcting the Effects of Mismatches in Time-Interleaved Analog Adaptive FIR Equalizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rao, L.P. ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA ; Sitthimahachaikul, N. ; Hurst, P.J.

Analog discrete-time finite-impulse-response (FIR) filters have been used as equalizers in digital communication receivers. For high speed applications, an FIR equalizer can be implemented using parallel sample-and-holds (S/Hs) and time-interleaved equalizer channels. Mismatches among the parallel S/Hs degrade the equalizer performance. This paper addresses mismatches of DC offsets, gain errors, sample-time errors, and bandwidths in the S/Hs. It is shown that having a different set of adapted coefficients in each equalizer channel can reduce the effects of mismatches. Simulation results are presented for different communication channels.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 11 )