By Topic

Comparison of Block Matching and Differential Methods for Motion Analysis of the Carotid Artery Wall From Ultrasound Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Spyretta Golemati ; First Intensive Care Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece ; John S. Stoitsis ; Aimilia Gastounioti ; Alexandros C. Dimopoulos
more authors

Motion of the carotid artery wall is important for the quantification of arterial elasticity and contractility and can be estimated with a number of techniques. In this paper, a framework for quantitative evaluation of motion analysis techniques from B-mode ultrasound images is introduced. Six synthetic sequences were produced using 1) a real image corrupted by Gaussian and speckle noise of 25 and 15 dB, and 2) the ultrasound simulation package Field II. In both cases, a mathematical model was used, which simulated the motion of the arterial wall layers and the surrounding tissue, in the radial and longitudinal directions. The performance of four techniques, namely optical flow (OFHS), weighted least-squares optical flow (OFLK(WLS)), block matching (BM), and affine block motion model (ABMM), was investigated in the context of this framework. The average warping indices were lowest for OFLK(WLS) (1.75 pixels), slightly higher for ABMM (2.01 pixels), and highest for BM (6.57 pixels) and OFHS (11.57 pixels). Due to its superior performance, OFLK(WLS) was used to quantify motion of selected regions of the arterial wall in real ultrasound image sequences of the carotid artery. Preliminary results indicate that OFLK(WLS) is promising, because it efficiently quantified radial, longitudinal, and shear strains in healthy adults and diseased subjects.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 5 )