By Topic

Enhancement of Satellite Precipitation Estimation via Unsupervised Dimensionality Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Majid Mahrooghy ; Department of Electrical Engineering, Mississippi State University, Starkville, MS, USA ; Nicolas H. Younan ; Valentine G. Anantharaj ; James V. Aanstoos

A methodology to enhance satellite precipitation estimation using unsupervised dimensionality reduction (UDR) techniques is developed. This enhanced technique is an extension to the precipitation estimation from remotely sensed imagery using an artificial neural network (PERSIANN) and cloud classification system (CCS) method (PERSIANN-CCS) enriched using wavelet features combined with dimensionality reduction. Cloud-top brightness temperature measurements from the Geostationary Operational Environmental Satellite (GOES)-12 are used for precipitation estimation at 4 km × 4 km spatial resolutions every 30 min. The study area in the continental U.S. covers parts of Louisiana, Arkansas, Kansas, Tennessee, Mississippi, and Alabama. Based on quantitative measures, root mean square error and Heidke skill score (HSS), the results show that the UDR techniques can improve the precipitation estimation accuracy. In addition, the independent component analysis is shown to have better performance than other UDR techniques; and in some cases, it achieves 10% improvement in the HSS.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 10 )