Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Local 3-D Motion Descriptor for Multi-View Human Action Recognition from 4-D Spatio-Temporal Interest Points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Holte, M.B. ; Visual Analysis of People Laboratory, Department of Architecture, Design and Media Technology, Aalborg Universtity, Aalborg, Denmark ; Chakraborty, B. ; Gonzalez, J. ; Moeslund, T.B.

In this paper, we address the problem of human action recognition in reconstructed 3-D data acquired by multi-camera systems. We contribute to this field by introducing a novel 3-D action recognition approach based on detection of 4-D (3-D space + time) spatio-temporal interest points (STIPs) and local description of 3-D motion features. STIPs are detected in multi-view images and extended to 4-D using 3-D reconstructions of the actors and pixel-to-vertex correspondences of the multi-camera setup. Local 3-D motion descriptors, histogram of optical 3-D flow (HOF3D), are extracted from estimated 3-D optical flow in the neighborhood of each 4-D STIP and made view-invariant. The local HOF3D descriptors are divided using 3-D spatial pyramids to capture and improve the discrimination between arm- and leg-based actions. Based on these pyramids of HOF3D descriptors we build a bag-of-words (BoW) vocabulary of human actions, which is compressed and classified using agglomerative information bottleneck (AIB) and support vector machines (SVMs), respectively. Experiments on the publicly available i3DPost and IXMAS datasets show promising state-of-the-art results and validate the performance and view-invariance of the approach.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:6 ,  Issue: 5 )