By Topic

A Novel Cost-Effective Portable Electronic Nose for Indoor-/In-Car Air Quality Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tian, F.C. ; Coll. of Electron. & Commun. Eng., Chongqing Univ., Chongqing, China ; Kadri, C. ; Zhang, L. ; Feng, J.W.
more authors

With today's competitive and complex environment which results from rapid industrial development, air quality monitoring is becoming a necessity. Devising devices that provide reliable, cost-effective, and fast monitoring of indoor/in-car harmful chemical compounds is of paramount importance for governments as well as individuals. Sensors array systems or commonly called electronic nose (E-nose) systems have been used in various fields of consumer applications. Owing to their versatility and ease of use, these systems can be an adequate alternative for indoor/in-car air quality monitoring. In this study a novel self-made and cost-effective electronic nose aiming at quantifying five indoor/in-car harmful gases (formaldehyde, benzene, CO, NO2, toluene), has been devised and implemented at the college of electronic and communication engineering of Chongqing University, China. A hybrid genetic algorithm support machine vector regression (GA-LSSVMR) model is used for pattern recognition and concentrations estimation. With absolute relative errors of prediction (MAREP) less than 10%, these models outperform those based on hybrid genetic algorithm back-propagation neural network regression (GA-BPNNR). Furthermore, the best regression models were embedded into the system for real-time concentration estimation, our system's predictions mostly agree with those of specific gas detectors. The product will therefore be a good alternative for indoor/in-car air quality monitoring.

Published in:

Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2012 International Conference on

Date of Conference:

5-6 March 2012