By Topic

Dual-band RFID tags based on folded dipole antennas loaded with spiral resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ferran Paredes ; CIMITEC, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 BELLATERRA, Spain ; Gerard Zamora ; Francisco Javier Herraiz-Martínez ; Ferran Martín
more authors

The purpose of this paper is to demonstrate the possibility of implementing folded dipole antennas operative at two closely spaced frequencies of interest, for instance, in ultra-high-frequency radio frequency identification (UHF-RFID) applications. The dual-band functionality is achieved by coupling a spiral resonator to the antenna, which operates as an unbalanced transmission line. This modifies the impedance of the antenna and dual-band functionality can be achieved by virtue of the conjugate matching between the antenna and the chip at the frequencies of interest. Two prototype devices have been designed and fabricated: a mono-band folded dipole UHF-RFID tag, and a dual-band UHF-RFID tag based on a spiral resonator coupled to a folded dipole antenna. The measured read ranges at the operating frequencies are in the vicinity of 6 m. The read ranges of the designed tags have been also measured by attaching them to different objects (a CD-ROM box and a plastic ID card). A certain frequency shift is obtained, but this shift can be corrected by merely modifying the distance between the resonator and the antenna.

Published in:

Antenna Technology (iWAT), 2012 IEEE International Workshop on

Date of Conference:

5-7 March 2012