Cart (Loading....) | Create Account
Close category search window
 

Cross-Layer Design of Congestion Control and Power Control in Fast-Fading Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tran, N.H. ; Dept. of Comput. Eng., Kyung Hee Univ., Yongin, South Korea ; Choong Seon Hong ; Sungwon Lee

We study the cross-layer design of congestion control and power allocation with outage constraint in an interference-limited multihop wireless networks. Using a complete-convexification method, we first propose a message-passing distributed algorithm that can attain the global optimal source rate and link power allocation. Despite the attractiveness of its optimality, this algorithm requires larger message size than that of the conventional scheme, which increases network overheads. Using the bounds on outage probability, we map the outage constraint to an SIR constraint and continue developing a practical near-optimal distributed algorithm requiring only local SIR measurement at link receivers to limit the size of the message. Due to the complicated complete-convexification method, however the congestion control of both algorithms no longer preserves the existing TCP stack. To take into account the TCP stack preserving property, we propose the third algorithm using a successive convex approximation method to iteratively transform the original nonconvex problem into approximated convex problems, then the global optimal solution can converge distributively with message-passing. Thanks to the tightness of the bounds and successive approximations, numerical results show that the gap between three algorithms is almost indistinguishable. Despite the same type of the complete-convexification method, the numerical comparison shows that the second near-optimal scheme has a faster convergence rate than that of the first optimal one, which make the near-optimal scheme more favorable and applicable in practice. Meanwhile, the third optimal scheme also has a faster convergence rate than that of a previous work using logarithm successive approximation method.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.