By Topic

Online Real-Time Task Scheduling in Heterogeneous Multicore System-on-a-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ya-Shu Chen ; National Taiwan University of Science and Technology, Taipei ; Han Chiang Liao ; Ting-Hao Tsai

Online task scheduling in heterogeneous multicore system-on-a-chip is a challenging problem due to precedence constraints and nonpreemptive task execution in the synergistic processor core. This study first proposes an online heterogeneous dual-core scheduling framework for dynamic workloads with real-time constraints. The general purpose processor core and the synergistic processor core are dedicated to separate schedulers with different scheduling policies, and precedence constraints among tasks are dealt with through interaction between the two schedulers. This framework is also configurable for low priority inversion and high system utilization. We then extend this framework to heterogeneous multicore systems with well-known dispatcher schemas. This paper presents a real case study to show the practicability of the proposed methodology, and presents a series of extensive simulations to obtain comparison studies using different workloads and scheduling algorithms.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:24 ,  Issue: 1 )