Cart (Loading....) | Create Account
Close category search window
 

Kinematic Model-Based Human Detectors for Multi-Channel Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gurbuz, S.Z. ; TUBITAK Space Technol. Res. Inst., TOBB Univ. of Econ. & Technol., Ankara, Turkey ; Melvin, W.L. ; Williams, D.B.

Humans are difficult targets to detect because they have small radar cross sections (RCS) and move at low velocities. Consequently, they are masked by Doppler spread ground clutter generated by the radar bearing platform motion. Furthermore, conventional radar-based human detection systems employ some type of linear-phase matched filtering, whereas most human targets generate a highly nonlinear phase history. This work proposes an enhanced, optimized, nonlinear phase (EnONLP) matched filter that exploits knowledge of human gait to improve the radar detection performance of human targets. A parametric model of the expected human response is derived for multi-channel radar systems and used to generate a dictionary of human returns for a range of possible parameter variations. The best linear combination of projections in this dictionary is computed via orthogonal matching pursuit (OMP) to detect and extract features for multiple targets. Performance of the proposed EnONLP method is compared with that of traditional space-time adaptive processing (STAP) and a previously derived parameter estimation-based ONLP detector. Results show that EnONLP exhibits a detection probability of about 0.8 for a clutter-to-noise (CNR) ratio of 20 dB and input signal-to-noise ratio (SNR) of 0 dB, while ONLP yields a 0.3 and STAP yields a 0.18 probability of detection for the same false alarm rate.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:48 ,  Issue: 2 )

Date of Publication:

APRIL 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.