By Topic

A Closed-Form Expression for the Exact Bit Error Probability for Viterbi Decoding of Convolutional Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bocharova, I.E. ; Dept. of Inf. Syst., St. Petersburg State Univ. of Inf. Technol., Mech. & Opt., St. Petersburg, Russia ; Hug, F. ; Johannesson, R. ; Kudryashov, B.D.

In 1995, Best etal. published a formula for the exact bit error probability for Viterbi decoding of the rate R =1/2, memory m = 1 (two-state) convolutional encoder with generator matrix G(D) = (1 1 + D) when used to communicate over the binary symmetric channel. Their formula was later extended to the rate R = 1/2, memory m = 2 (four-state) convolutional encoder with generator matrix G(D) = (1 + D2 1 + D + D2) by Lentmaier et al. In this paper, a different approach to derive the exact bit error probability is described. A general recurrent matrix equation, connecting the average information weight at the current and previous states of a trellis section of the Viterbi decoder, is derived and solved. The general solution of this matrix equation yields a closed-form expression for the exact bit error probability. As special cases, the expressions obtained by Best et al. for the two-state encoder and by Lentmaier et al. for a four-state encoder are used. The closed-form expression derived in this paper is evaluated for various realizations of encoders, including rate R = 1/2 and R = 2/3 encoders, of as many as 16 states. Moreover, it is shown that it is straightforward to extend the approach to communication over the quantized additive white Gaussian noise channel.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 7 )