Cart (Loading....) | Create Account
Close category search window
 

Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongzan Jiao ; State Key Lab. of Inf. Eng. in Surveying, Mapping & Remote Sensing, Wuhan Univ., Wuhan, China ; Yanfei Zhong ; Liangpei Zhang

In this paper, a spectral encoding and matching algorithm inspired by biological deoxyribonucleic acid (DNA) computing is proposed to perform the task of spectral signature classification for hyperspectral remote sensing data. As a novel branch of computational intelligence, DNA computing has the strong computing and matching capability to discriminate the tiny differences in DNA strands by DNA encoding and matching in the molecule layer. Similar to DNA discrimination, a hyperspectral remote sensing data matching approach is used to recognize the land cover material from a spectral library or image, according to the rich spectral information. However, it is difficult to apply DNA computing to hyperspectral remote sensing data processing because traditional DNA computing often relies on biochemical reactions of DNA molecules and may result in incorrect or undesirable computations. To utilize the advantages and avoid the problems of biological DNA computing, an artificial DNA computing approach is proposed for spectral encoding and matching for hyperspectral remote sensing data. A DNA computing-based spectral matching approach is used to first transform spectral signatures into DNA codewords by capturing the key spectral features with a spectral feature encoding operation. After DNA encoding, the typical DNA database for interesting classes is constructed and saved by DNA evolutionary operating mechanisms such as crossover, mutation, and structured mutation. During the course of spectral matching, each pixel of the hyperspectral image, or each signature measured in the field, is input to the constructed DNA database. By computing the distance between an unclassified spectrum and the typical DNA codewords from the database, the class property of each pixel is set as the minimum distance class. Experiments using different hyperspectral data sets were performed to evaluate the performance of the proposed artificial DNA computing-based spectral matching algorithm by comp- ring it with other traditional hyperspectral classifiers, including spectral matching classifiers (binary coding, spectral angle mapper and spectral derivative feature coding (SDFC) matching methods) and a novel statistical method of machine learning termed support vector machine (SVM). Experimental results demonstrate that the proposed algorithm is distinctly superior to the three traditional hyperspectral data classification algorithms. It presents excellent processing efficiency, compared to SVM, with high-dimensional data captured by the Hyperspectral Digital Imagery Collection Experiment sensor, and hence provides an effective option for spectral matching classification of hyperspectral remote sensing data.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.