By Topic

A Study of Modular AWGs for Large-Scale Optical Switching Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tong Ye ; State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China ; Tony T. Lee ; Weisheng Hu

Array-waveguide grating (AWG) is a kind of passive wavelength router. It can perform nonblocking switching functions in conjunction with tunable wavelength converters (TWCs). For optical switching systems with large number of ports, however, the scalability of the AWG is restricted by coherent crosstalk. In this paper, we propose a modular method of designing arrays of AWGs for large-scale switching systems, in which a contention-free connection from an idle input to an idle output can always be established regardless of the number of existing connections in progress. The construction process of AWG networks is sometimes called AWG function decomposition. For the decomposition of an N × N AWG, we describe the modular architecture of a functionally equivalent three-stage network of smaller AWGs, and derive the necessary and sufficient conditions on the number of smaller AWG modules needed for nonblocking switching. Our results can be applied to the decomposition of any AWG components employed in an AWG-based switching network to suppress the coherent crosstalk.

Published in:

Journal of Lightwave Technology  (Volume:30 ,  Issue: 13 )