Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Identifying implicit relationships

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chu-Carroll, J. ; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; Brown, E.W. ; Lally, A. ; Murdock, J.W.

Answering natural-language questions may often involve identifying hidden associations and implicit relationships. In some cases, an explicit question is asked by the user to discover some hidden concept related to a set of entities. Answering the explicit question and identifying the implicit entity both require the system to discover the semantically related but hidden concepts in the question. In this paper, we describe a spreading-activation approach to concept expansion, backed by three distinct knowledge resources for measuring semantic relatedness. We discuss how our spreading-activation approach is applied to address these questions, exemplified in Jeopardy!™ by questions in the “COMMON BONDS” category and by many Final Jeopardy! questions. We demonstrate the effectiveness of the approach by measuring its impact on IBM Watson™ performance on these questions.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:56 ,  Issue: 3.4 )