By Topic

A Hybrid Estimation of Distribution Algorithm with Decomposition for Solving the Multiobjective Multiple Traveling Salesman Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. A. Shim ; Department of Electrical and Computer Engineering, National University of Singapore, Singapore ; K. C. Tan ; C. Y. Cheong

Evolutionary multiobjective optimization with decomposition, in which the algorithm is not required to differentiate between the dominated and nondominated solutions, is one of the promising approaches in dealing with multiple conflicting objectives. In this paper, the estimation of distribution algorithm (EDA) is integrated into the decomposition framework. The search behavior of the algorithm is further enhanced by hybridizing local search metaheuristic approaches with the decomposition EDA. Three local search techniques, including hill climbing, simulated annealing, and evolutionary gradient search, are considered. A novel multiobjective formulation of the multiple traveling salesman problem is proposed. The hybrid algorithms are used to solve the formulated problem with different number of objective functions, salesmen, and problem sizes. The effectiveness and efficiency of the algorithms are tested and benchmarked against several state-of-the-art multiobjective evolutionary paradigms.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:42 ,  Issue: 5 )