By Topic

Kernel Ridge Regression with Lagged-Dependent Variable: Applications to Prediction of Internal Bond Strength in a Medium Density Fiberboard Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Norman Kim ; Rutgers Center for Operations Research (RUTCOR), Rutgers University, Piscataway, USA ; Young-Seon Jeong ; Myong-Kee Jeong ; Timothy M. Young

Medium density fiberboard (MDF) is one of the most popular products in wood composites industry. Kernel-based regression approaches such as the support vector machine for regression have been used to predict the final product quality characteristics of MDF. However, existing approaches for the prediction do not consider the autocorrelation of observations while exploring the nonlinearity of data. To avoid such a problem, this paper proposes a kernel-based regression model with lagged-dependent variables (LDVs) to consider both autocorrelations of response variables and the nonlinearity of data. We will explore the nonlinear relationship between the response and both independent variables and past response variables using various kernel functions. In this case, it will be difficult to apply existing kernel trick because of LDVs. We derive the kernel ridge estimators with LDVs using a new mapping idea so that the nonlinear mapping does not have to be computed explicitly. In addition, the centering technique of the individual mapped data in the feature space is derived to consider an intercept term in kernel ridge regression (KRR) with LDVs. The performances of the proposed approaches are compared with those of popular approaches such as KRR, ordinary least squares (OLS) with LDVs using simulated and real-life datasets. Experimental results show that the proposed approaches perform better than KRR or ridge regression and yield consistently better results than OLS with LDVs, implying that it can be used as a promising alternative when there are autocorrelations of response variables.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:42 ,  Issue: 6 )