By Topic

Completely Stale Transmitter Channel State Information is Still Very Useful

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohammad Ali Maddah-Ali ; Bell-Labs Alcatel-Lucent ; David Tse

Transmitter channel state information (CSIT) is crucial for the multiplexing gains offered by advanced interference management techniques such as multiuser multiple-input multiple-output (MIMO) and interference alignment. Such CSIT is usually obtained by feedback from the receivers, but the feedback is subject to delays. The usual approach is to use the fed back information to predict the current channel state and then apply a scheme designed assuming perfect CSIT. When the feedback delay is large compared to the channel coherence time, such a prediction approach completely fails to achieve any multiplexing gain. In this paper, we show that even in this case, the completely stale CSI is still very useful. More concretely, we show that in an MIMO broadcast channel with transmit antennas and receivers each with 1 receive antenna, K/1+1/2+···+1/K (>;1) degrees of freedom is achievable even when the fed back channel state is completely independent of the current channel state. Moreover, we establish that if all receivers have independent and identically distributed channels, then this is the optimal number of degrees of freedom achievable. In the optimal scheme, the transmitter uses the fed back CSI to learn the side information that the receivers receive from previous transmissions rather than to predict the current channel state. Our result can be viewed as the first example of feedback providing a degree-of-freedom gain in memoryless channels.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 7 )