By Topic

SVM Selective Fusion (SELF) for Multi-Source Classification of Structurally Complex Tropical Rainforest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pouteau, R. ; South Pacific Geosci. Lab., Univ. of French Polynesia, Faa''a, French Polynesia ; Stoll, B.

Accuracy of land cover classification is generally improved by inputting multi-sensory and GIS data since complex vegetation type identification benefits from synergism of complementary information. However, multi-source fusion can also deteriorate accuracy when some classes do not benefit from all sources. On the basis of this premise, we introduce a Selective Fusion (SELF) scheme based on Support Vector Machines (SVM) which use a single source for source-specific classes and fuse all sources for classes considered as “in difficulty”. Our method yields better overall accuracy and Kappa than the classical systematic approach since it takes advantage of the accuracy achieved by SVM and its ability to weight numerous and heterogeneous sources without the drawback of being sensible to irrelevant data for source-specific classes. This operational method can be used efficiently to enhance accuracy when analyzing the wealth of information available from remote sensing products.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 4 )