By Topic

Classification in High-Dimensional Feature Spaces—Assessment Using SVM, IVM and RVM With Focus on Simulated EnMAP Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andreas Ch. Braun ; Institute of Photogrammetry and Remote Sensing, KIT—Karlsruhe Institute for Technology, Karlsruhe, Germany ; Uwe Weidner ; Stefan Hinz

Support Vector Machines (SVM) are increasingly used in methodological as well as application oriented research throughout the remote sensing community. Their classification accuracy and the fact that they can be applied on virtually any kind of remote sensing data set are their key advantages. Especially researchers working with hyperspectral or other high dimensional datasets tend to favor SVMs as they suffer far less from the Hughes phenomenon than classifiers designed for multispectral datasets do. Due to these issues, numerous researchers have published a broad range of enhancements on SVM. Many of these enhancements aim at introducing probability distributions and the Bayes theorem. Within this paper, we present an assessment and comparison of classification results of the SVM and two enhancements-Import Vector Machines (IVM) and Relevance Vector Machines (RVM)-on simulated datasets of the Environmental Mapping and Analysis Program EnMAP.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:5 ,  Issue: 2 )