Cart (Loading....) | Create Account
Close category search window
 

Classification in High-Dimensional Feature Spaces—Assessment Using SVM, IVM and RVM With Focus on Simulated EnMAP Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Braun, A.C. ; Inst. of Photogrammetry & Remote Sensing, Karlsruhe Inst. for Technol., Karlsruhe, Germany ; Weidner, U. ; Hinz, S.

Support Vector Machines (SVM) are increasingly used in methodological as well as application oriented research throughout the remote sensing community. Their classification accuracy and the fact that they can be applied on virtually any kind of remote sensing data set are their key advantages. Especially researchers working with hyperspectral or other high dimensional datasets tend to favor SVMs as they suffer far less from the Hughes phenomenon than classifiers designed for multispectral datasets do. Due to these issues, numerous researchers have published a broad range of enhancements on SVM. Many of these enhancements aim at introducing probability distributions and the Bayes theorem. Within this paper, we present an assessment and comparison of classification results of the SVM and two enhancements-Import Vector Machines (IVM) and Relevance Vector Machines (RVM)-on simulated datasets of the Environmental Mapping and Analysis Program EnMAP.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.