By Topic

Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Faller, J. ; Inst. of Knowledge Discovery, Graz Univ. of Technol., Graz, Austria ; Vidaurre, C. ; Solis-Escalante, T. ; Neuper, C.
more authors

System calibration and user training are essential for operating motor imagery based brain-computer interface (BCI) systems. These steps are often unintuitive and tedious for the user, and do not necessarily lead to a satisfactory level of control. We present an Adaptive BCI framework that provides feedback after only minutes of autocalibration in a two-class BCI setup. During operation, the system recurrently reselects only one out of six predefined logarithmic bandpower features (10-13 and 16-24 Hz from Laplacian derivations over C3, Cz, and C4), specifically, the feature that exhibits maximum discriminability. The system then retrains a linear discriminant analysis classifier on all available data and updates the online paradigm with the new model. Every retraining step is preceded by an online outlier rejection. Operating the system requires no engineering knowledge other than connecting the user and starting the system. In a supporting study, ten out of twelve novice users reached a criterion level of above 70% accuracy in one to three sessions (10-80 min online time) of training, with a median accuracy of 80.2 11.3% in the last session. We consider the presented system a positive first step towards fully autocalibrating motor imagery BCIs.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 3 )