By Topic

Constraining Upper Limb Synergies of Hemiparetic Patients Using a Robotic Exoskeleton in the Perspective of Neuro-Rehabilitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vincent Crocher ; Institute of Intelligent Systems and Robotics (CNRS—UMR 7222), University Pierre & Marie Curie, Paris, France ; Anis Sahbani ; Johanna Robertson ; Agnès Roby-Brami
more authors

The aim of this paper was to explore how an upper limb exoskeleton can be programmed to impose specific joint coordination patterns during rehabilitation. Based on rationale which emphasizes the importance of the quality of movement coordination in the motor relearning process, a robot controller was developed with the aim of reproducing the individual corrections imposed by a physical therapist on a hemiparetic patient during pointing movements. The approach exploits a description of the joint synergies using principal component analysis (PCA) on joint velocities. This mathematical tool is used both to characterize the patient's movements, with or without the assistance of a physical therapist, and to program the exoskeleton during active-assisted exercises. An original feature of this controller is that the hand trajectory is not imposed on the patient: only the coordination law is modified. Experiments with hemiparetic patients using this new active-assisted mode were conducted. Obtained results demonstrate that the desired inter-joint coordination was successfully enforced, without significantly modifying the trajectory of the end point.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:20 ,  Issue: 3 )