By Topic

K computer: 8.162 PetaFLOPS massively parallel scalar supercomputer built with over 548k cores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Many high-performance CPUs employ a multicore architecture with a moderate clock frequency and wide instruction issue, including SIMD extensions, to achieve high performance while retaining a practical power consumption. As demand for supercomputer performance grows faster than the rate that improvements are made to CPU performance, the total number of cores of high-end supercomputers has increased tremendously. Efficient handling of large numbers of cores is a key aspect in the design of supercomputers. Building a supercomputer with lower power consumption and significant reliability is also important from the viewpoints of cost and availability.

Published in:

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International

Date of Conference:

19-23 Feb. 2012