By Topic

A normal factor graph approach for co-operative spectrum sensing in cognitive radio

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bera, D. ; G.S. Sanyal Sch. of Telecommun., India ; Pathak, S.S. ; Chakrabarti, I.

In this paper, normal factor graph (NFG) based probabilistic inference approach for the cooperative spectrum sensing in cognitive radio (CR) is presented. Spectrum sensing problem is modeled as binary hypothesis testing problem. We have formulated the joint probability function with all latent and manifest variables which describe the system. Then decompose the joint distribution function into simpler conditional probability functions and represent them through normal factor graph. The exact marginalization is computed by passing the messages (probability values) among the nodes and edges using Sum-product-algorithm (SPA) / Belief-propagation (BP) algorithm. We compute messages for null and alternate hypothesis and apply Neyman-Pearson (NP) theorem based Likelihood ratio test (LRT) for optimal decision at fusion center. We consider non-central chi-square distribution for alternate hypothesis (H1). It is assumed that secondary users (SUs) are independently sensing the primary user (PU), therefore the graph has no cycle. It is employing energy detector based local sensing with hard decision. We consider non-ideal channel conditions for both PU-SU and SU-FC channels. Initially flat-fading, time-invariant channels with AWGN between PU-SUs and binary symmetric channels (BSC) and AWGN channels between SUs and fusion center (FC) are considered. Simulation results show that proposed methods improves the performance of the cooperative spectrum sensing.

Published in:

Communications (NCC), 2012 National Conference on

Date of Conference:

3-5 Feb. 2012