By Topic

Application-specific power-efficient approach for reducing register file vulnerability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tabkhi, H. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Schirner, G.

This paper introduces a power efficient approach for improving reliability of heterogeneous register files in embedded processors. The approach is based on the fact that control applications have high demands in reliability, while many special-purpose register are unused in a considerable portion of execution. The paper proposes a static application binary analysis which is applied at function-level granularity and offers a systematic way to manage the RF's protection by mirroring the content of used registers into unused ones. The simulation results on an enhanced Blackfin processor demonstrate that Register File Vulnerability Factor (RFVF) is reduced from 35% to 6.9% in cost of 1% performance lost on average for control applications from Mibench suite.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012

Date of Conference:

12-16 March 2012