By Topic

Test generation for clock-domain crossing faults in integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karimi, N. ; Electr. & Comput. Eng. Dept., Duke Univ., Durham, NC, USA ; Chakrabarty, K. ; Gupta, P. ; Patil, S.

Clock-domain crossing (CDC) faults are a serious concern for high-speed, multi-core integrated circuits. Even when robust design methods based on synchronizers and design verification techniques are used, process variations can introduce subtle timing problems that affect data transfer across clock-domain boundaries for fabricated chips. We present a test generation technique that leverages commercial ATPG tools, but introduces additional constraints, to detect CDC faults. We also present HSpice simulation data using a 45 nm technology to quantify the occurrence of CDC faults at clock-domain boundaries. Results are presented for synthesized IWLS05 benchmarks that include multiple clock domains. The results highlight the ineffectiveness of commercial transition-delay fault ATPG and the “coverage gap” resulting from the use of ATPG methods employed in industry today. While the proposed method can detect nearly all CDC faults, TDF ATPG is found to be severely deficient for screening CDC faults.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012

Date of Conference:

12-16 March 2012