By Topic

Full MIMO Spatial Filtering Approach for Dynamic Range Reduction in Wideband Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
van den Heuvel, J.H.C. ; Dept. of Electr. Eng., Univ. of Technol. Eindhoven, Eindhoven, Netherlands ; Linnartz, J.-P.M.G. ; Baltus, P.G.M. ; Cabric, D.

Wideband cognitive radios (CRs) receive signals from multiple transmitters simultaneously to increase spectrum utilization. Processing a wideband spectrum is challenging due to large dynamic range (DR) of the received signal and required high sampling speed of the ADC. The power consumption of high sampling speed/high-resolution ADCs have been prohibitive for handheld radios. However, in CR applications strong inband signals that pose large DR requirements can be filtered out, since CR needs to detect unused spectrum bands where no signal is present. Spatial domain filtering approaches through use of multiple antennas to reduce DR of the wideband signal are proposed. Algorithms and architectures are developed for vector beamforming (multiple antennas and a single ADC) and full multiple-input multiple-output (MIMO) (multiple antennas with an ADC per antenna) analog spatial filters for adaptive interference suppression. Simulation results indicate that for realistic indoor propagation environments the ADC resolution of an analog beamformer can be reduced by 4 bits when the receiver operates at 2 bits/s/Hz, reducing ADC power consumption by approximately 90%. Moreover, simulations indicate that full MIMO analog spatial filter can reduce ADC resolution with over 3 bits per ADC when the receiver operates at 5 bits/s/Hz, reducing ADC power consumption by approximately 85%.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 11 )