Cart (Loading....) | Create Account
Close category search window
 

Dynamical System Guided Mapping of Quantitative Neuronal Models Onto Neuromorphic Hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peiran Gao ; Dept. of Bioeng., Stanford Univ., Stanford, CA, USA ; Benjamin, B.V. ; Boahen, K.

We present an approach to map neuronal models onto neuromorphic hardware using mathematical insights from dynamical system theory. Quantitatively accurate mappings are important for neuromorphic systems to both leverage and extend existing theoretical and numerical cortical modeling results. In the present study, we first calibrate the on-chip bias generators on our custom hardware. Then, taking advantage of the hardware's high-throughput spike communication, we rapidly estimate key mapping parameters with a set of linear relationships for static inputs derived from dynamical system theory. We apply this mapping procedure to three different chips, and show close matching to the neuronal model and between chips-the Jenson-Shannon divergence was reduced to at least one tenth that of the shuffled control. We confirm that our mapping procedure generalizes to dynamic inputs: Silicon neurons match spike timings of a simulated neuron with a standard deviation of 3.4% of the average inter-spike interval.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.