By Topic

Prediction of High-Risk Asymptomatic Carotid Plaques Based on Ultrasonic Image Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Carotid plaques have been associated with ipsilateral neurological symptoms. High-resolution ultrasound can provide information not only on the degree of carotid artery stenosis but also on the characteristics of the arterial wall including the size and consistency of atherosclerotic plaques. The aim of this study is to determine whether the addition of ultrasonic plaque texture features to clinical features in patients with asymptomatic internal carotid artery stenosis (ACS) improves the ability to identify plaques that will produce stroke. 1121 patients with ACS have been scanned with ultrasound and followed for a mean of 4 years. It is shown that the combination of texture features based on second-order statistics spatial gray level dependence matrices (SGLDM) and clinical factors improves stroke prediction (by correctly predicting 89 out of the 108 cases that were symptomatic). Here, the best classification results of 77 ±1.8% were obtained from the use of the SGLDM texture features with support vector machine classifiers. The combination of morphological features with clinical features gave slightly worse classification results of 76 ±2.6%. These findings need to be further validated in additional prospective studies.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 5 )