By Topic

A Fully Differential CMOS–MEMS DETF Oxide Resonator With Q > \hbox {4800} and Positive TCF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wen-Chien Chen ; Dept. of Power Mech. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Ming-Huang Li ; Yu-Chia Liu ; Weileun Fang
more authors

A fully differential CMOS-MEMS double-ended tuning-fork (DETF) oxide resonator fabricated using a 0.18-μm CMOS process has been demonstrated with a Q greater than 4800 and more-than-20-dB stopband rejection at 10.4 MHz. The key to attaining such a performance attributes to the use of oxide structures with embedded metal electrodes, where SiO2 offers a Q enhancement (at least a 3-times-higher Q) as compared to other CMOS-MEMS-based composite resonators with similar structures and vibrating modes and where flexible electrical routing facilitates fully differential configuration to suppress capacitive feedthroughs. In addition, the resonators developed in this work possess a positive temperature coefficient of frequency (TCf) and mode-splitting capability, therefore indicating a great potential for temperature compensation and spurious-mode suppression, respectively. This technology paves a way to realize fully integrated CMOS-MEMS oscillators and filters which might benefit future single-chip transceivers for wireless communications.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 5 )