By Topic

Wavelength-Spacing-Tunable Double-Pumped Multiwavelength Optical Parametric Oscillator Based on a Mach–Zehnder Interferometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bing Sun ; State Key Lab. of Modern Opt. Instrum., Zhejiang Univ., Hangzhou, China ; Kai Hu ; Chen, D. ; Yizhen Wei
more authors

A novel double-pumped ring cavity multiwavelength fiber optical parametric oscillator (MW-FOPO) with tunable wavelength spacing is proposed. In the MW-FOPO, we utilize a highly nonlinear dispersion-shifted fiber as the gain medium and a Mach-Zehnder interferometer as the comb-like filter. Twenty-four-wavelength lasing of the double-pumped MW-FOPO with a ripple less than ±4.3 dB and a wavelength spacing of about 0.8 nm in a wavelength range from 1541 to 1558 nm is experimentally demonstrated. The wavelength spacing can be continuously tuned and multiwavelength lasings with wavelength spacings of 0.08, 0.2, 0.4, and 0.8 nm are demonstrated, respectively. We discussed the power stability of the multiwavelength lasing of the double-pumped MW-FOPO. A comparison of the output spectra among the double-pumped MW-FOPO, the single-pumped MW-FOPO, and the multiwavelength erbium-doped fiber laser is also presented.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 12 )