Cart (Loading....) | Create Account
Close category search window
 

Integrated Energy-Harvesting Photodiodes With Diffractive Storage Capacitance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Fong, E.G. ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, Davis, CA, USA ; Guilar, N.J. ; Kleeburg, T.J. ; Hai Pham
more authors

Integrating energy-harvesting photodiodes with logic and exploiting on-die interconnect capacitance for energy storage can enable new, ultraminiaturized wireless systems. Unlike CMOS imager pixels, the proposed photodiode designs utilize p-diffusion fingers and are implemented in a conventional logic process. Also unlike specialized solar cell processes, the designs utilize the on-chip metal interconnect to form a diffraction grating above the p-diffusion fingers which also provides capacitive energy storage. To explore the tradeoffs between optical efficiency and energy storage for integrated photodiodes, an array of photovoltaics with various diffractive storage capacitors was designed in a 90-nm CMOS logic process. The diffractive effects can be exploited to increase the photodiodes' response to off-axis illumination. Transient effects from interfacing the photodiodes with switched-capacitor DC-DC converters were examined, with measurements indicating a 50% reduction in the output voltage ripple due to the diffractive storage capacitance. A quantitative comparison between 90-nm and 0.35-μm CMOS logic processes for energy-harvesting capabilities was carried out. Measurements show an increase in power generation for the newer CMOS technology, however at the cost of reduced output voltage. One potential application for the integrated photodiodes is harvesting energy for a subdermal biomedical device.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.