Cart (Loading....) | Create Account
Close category search window
 

Battery-Health Conscious Power Management in Plug-In Hybrid Electric Vehicles via Electrochemical Modeling and Stochastic Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moura, S.J. ; Mech. & Aerosp. Eng. Dept., Univ. of California San Diego, La Jolla, CA, USA ; Stein, J.L. ; Fathy, H.K.

This paper develops techniques to design plug-in hybrid electric vehicle (PHEV) power management algorithms that optimally balance lithium-ion battery pack health and energy consumption cost. As such, this research is the first to utilize electrochemical battery models to optimize the power management in PHEVs. Daily trip length distributions are integrated into the problem using Markov chains with absorbing states. We capture battery aging by integrating two example degradation models: solid-electrolyte interphase (SEI) film formation and the “Ah-processed” model. This enables us to optimally tradeoff energy cost versus battery-health. We analyze this tradeoff to explore how optimal control strategies and physical battery system properties are related. Specifically, we find that the slope and convexity properties of the health degradation model profoundly impact the optimal charge depletion strategy. For example, solutions that balance energy cost and SEI layer growth aggressively deplete battery charge at high states-of-charge (SoCs), then blend engine and battery power at lower SoCs.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.