By Topic

Probabilistic Tracking of Affine-Invariant Anisotropic Regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Giannarou, S. ; Hamlyn Centre for Robotic Surg., Imperial Coll. London, London, UK ; Visentini-Scarzanella, M. ; Guang-Zhong Yang

Despite a wide range of feature detectors developed in the computer vision community over the years, direct application of these techniques to surgical navigation has shown significant difficulties due to the paucity of reliable salient features coupled with free--form tissue deformation and changing visual appearance of surgical scenes. The aim of this paper is to propose a novel probabilistic framework to track affine-invariant anisotropic regions under contrastingly different visual appearances during Minimally Invasive Surgery (MIS). The theoretical background of the affine-invariant anisotropic feature detector is presented and a real-time implementation exploiting the computational power of the GPU is proposed. An Extended Kalman Filter (EKF) parameterization scheme is used to adaptively adjust the optimal templates of the detected regions, enabling accurate identification and matching of the tracked features. For effective tracking verification, spatial context and region similarity have also been incorporated. They are used to boost the prediction of the EKF and recover potential tracking failure due to drift or false positives. The proposed framework is compared to the existing methods and their respective performance is evaluated with in vivo video sequences recorded from robotic-assisted MIS procedures, as well as real-world scenes.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 1 )