By Topic

Using Patterns to Encode Color Information for Dichromats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sajadi, B. ; Dept. of Comput. Sci., Univ. of California, Irvine, Irvine, CA, USA ; Majumder, A. ; Oliveira, M.M. ; Schneider, R.G.
more authors

Color is one of the most common ways to convey information in visualization applications. Color vision deficiency (CVD) affects approximately 200 million individuals worldwide and considerably degrades their performance in understanding such contents by creating red-green or blue-yellow ambiguities. While several content-specific methods have been proposed to resolve these ambiguities, they cannot achieve this effectively in many situations for contents with a large variety of colors. More importantly, they cannot facilitate color identification. We propose a technique for using patterns to encode color information for individuals with CVD, in particular for dichromats. We present the first content-independent method to overlay patterns on colored visualization contents that not only minimizes ambiguities but also allows color identification. Further, since overlaying patterns does not compromise the underlying original colors, it does not hamper the perception of normal trichromats. We validated our method with two user studies: one including 11 subjects with CVD and 19 normal trichromats, and focused on images that use colors to represent multiple categories; and another one including 16 subjects with CVD and 22 normal trichromats, which considered a broader set of images. Our results show that overlaying patterns significantly improves the performance of dichromats in several color-based visualization tasks, making their performance almost similar to normal trichromats'. More interestingly, the patterns augment color information in a positive manner, allowing normal trichromats to perform with greater accuracy.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:19 ,  Issue: 1 )