By Topic

Distribution transformer stress in smart grid with coordinated charging of Plug-In Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohammad A. S. Masoum ; Department of Electrical and Computer Engineering, Curtin University, Perth, Australia ; Paul S. Moses ; Somayeh Hajforoosh

Coordinated charging of Plug-In Electric Vehicles (PEVs) in residential distribution systems is a new concept currently being explored in the wake of smart grids. Utilities are exploring these options as there are concerns about potential stresses and network congestions that may occur with random and uncoordinated multiple domestic PEV charging activities. Such operations may lead to degraded power quality, poor voltage profiles, overloads in transformer and cables, increased power losses and overall a reduction in the reliability and economy of smart grids. Future smart grids communication network will play an important role in PEV operation because the battery chargers can be remotely coordinated by the utility and harnessed for storing surplus grid energy and reused to support the grid during peak times. Based on a recently proposed PEV charging algorithm, this paper focuses on the impact of coordinated charging on distribution transformer loading and performance. Simulation results are presented to explore the ability of the PEV coordination algorithm in reducing the stress on distribution transformers at different PEV penetration levels. The performance of various distribution transformers within the simulated smart grid is examined for a modified IEEE 23 kV distribution system connected to several low voltage residential networks populated with PEVs.

Published in:

2012 IEEE PES Innovative Smart Grid Technologies (ISGT)

Date of Conference:

16-20 Jan. 2012