By Topic

Optimal design of grid-interfaced EV chargers with integrated generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gunter, S.J. ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Afridi, K.K. ; Perreault, D.J.

The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the next few decades. Large scale unregulated deployment of either technology can have detrimental impact on the electric grid. However, appropriate pairing of these technologies along with some storage could mitigate their individual negative impacts. This paper presents a framework and an optimization methodology for designing grid-interfaced systems that integrate electric vehicle chargers, distributed generation and storage. To demonstrate its usefulness, this methodology is applied to the design of optimal architectures for a residential charging case. It is shown that, given current costs, maximizing grid power usage minimizes system lifecycle cost. However, depending upon the location's solar irradiance patterns, architectures with solar photovoltaic generation can be more cost effective than architectures without.

Published in:

Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES

Date of Conference:

16-20 Jan. 2012