By Topic

A fully integrated SiGe E-BAND transceiver chipset for broadband point-to-point communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Katz, O. ; IBM Haifa Labs., Haifa Univ. Campus, Haifa, Israel ; Ben-Yishay, R. ; Carmon, R. ; Sheinman, B.
more authors

Fully integrated chipset at E-band frequencies in a superhetrodyne architecture covering the lower 71-76 GHz and upper 81-86 GHz bands were designed and fabricated in 0.13%m SiGe technology. The receiver chips include an image-reject low-noise amplifier (LNA), RF-to-IF mixer, variable gain IF amplifier, quadrature IF-to-baseband de-modulators, tunable baseband filter, phase-locked loop (PLL), and frequency multiplier by four (quadrupler). The receiver chips achieve 60dB gain, 8.5 dB noise figure, -30 dBm IIP3, and consumes 600 mW. The transmitter chips include a power amplifier, image-reject driver, IF-to-RF up-converting mixer, variable gain IF amplifier, quadrature baseband-to-IF modulator, PLL, and frequency multiplier by four (quadrupler). It achieves output power P1dB of 0 to 11 dBm, Psat of 3.3 to 14 dBm, and consumes 850 mW.

Published in:

Radio and Wireless Symposium (RWS), 2012 IEEE

Date of Conference:

15-18 Jan. 2012