By Topic

A methodology for modeling the distributions of medical images and their stochastic properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ya-Qin Zhang ; Dept. of Electr. & Comput. Eng., George Washington Univ., Washington, DC, USA ; Loew, M.H. ; Pickholtz, R.L.

The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications

Published in:

Medical Imaging, IEEE Transactions on  (Volume:9 ,  Issue: 4 )