Cart (Loading....) | Create Account
Close category search window

Normalized Energy Density-Based Forensic Detection of Resampled Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoying Feng ; Dept. of Comput. Sci., Univ. Coll. London, London, UK ; Cox, I.J. ; Doerr, G.

We propose a new method to detect resampled imagery. The method is based on examining the normalized energy density present within windows of varying size in the second derivative of the image in the frequency domain, and exploiting this characteristic to derive a 19-D feature vector that is used to train a SVM classifier. Experimental results are reported on 7500 raw images from the BOSS database. Comparison with prior work reveals that the proposed algorithm performs similarly for resampling rates greater than 1, and is superior to prior work for resampling rates less than 1. Experiments are performed for both bilinear and bicubic interpolations, and qualitatively similar results are observed for each. Results are also provided for the detection of resampled imagery with noise corruption and JPEG compression. As expected, some degradation in performance is observed as the noise increases or the JPEG quality factor declines.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.